# WHAT ARE THE FORMULAS OF -COS-2X ?CONCEPT OF COS 2X FORMULA ,DERIVATION AND SOLVED EXAMPLE?

The word trigonometry being driven from the Greek Word “trigon, and “metron, and it means measuring the sides of triangle The subject originally thought and part of the scope of development to solve geometric problems involving triangles. We know about the trigonometric ratio of the acute angles as the ratio of the sides of the right sides of the right-angle triangle. In this article, we will discuss the concept and COS2X formula of one such trigonometric ratios namely cos2x with other trigonometric ratios.

COS 2X FORMULA

WHAT IS COS2X?

The trignometric ratio of an angle in a right triangle define the the reltionship between the angle and the length of its sides .Cosin2x or Cos2X is also one such trignometrical formula also known as double angle formula as it as double angle on it.Because of this ,it is being driven by the expression for trignometric function of the sum and difference of two numbers and related expressions.

DERIVATION OF COS2X FORMULA?

Let us start with the consideration of addition formula

COS (X+Y)

cos X cos Y -sin X sin Y

Let us equate ,X and Y ,I.e. X=Y

So the above formula for cos2x becomes

Cos 2X=cos(X+X)

CosX CosX -sin X sinX

Cos 2X =cos2X -sin2 x

Hence the first cos2x follow as

Cos2X = cos2X -sin2 x

And for this reason ,we know this formula as double the angle formula ,because we double the angle

OTHER FORMULAS OF COS2X

COS2X =1-2sin2 x

To derive this we need to start from the earlier derivation As we already know that

cos2X =Cos2X -sin2X

Cos2X =(1-sin2 X ) -sin2 X (Since ,cos2X=(1-sin2 X )

cos2X=1-sin2 X -sin2 X

So

Cos2X=1-(sin2 X+sin2 X)

Hence cos2x =1-2sin2 X

Cos2x =2COS2X-1

To derive this we need to start from the eariler derivation As we already know that

cos2X =Cos2X -sin2X

Cos2x=cos2X-(1-cos2X){Since sin2x=(1-cos2X)}

Cos2x =cos2X-1 +cos2X

cos2X=(cos2X+cos2X)-1

Hence cos2X=2cos2X-1

cos2X=1-tan2X\1+tan2X

To derive this we need to start from the earlier derivation As we already know that

cos2X=cos2X-sin2X

cos2X=cos2X-sin2X

cos2X=cos2X-sin2X\1

cos2X=cos2X-cos2X\cos2X+cos2X{since cos2X+sin2X=1}

Dividind both numerator and demonetor by cos2X we get

Cos 2X=1-tan2X\1+tan2X{Since that tanx=sinx\cosx)

HENCE COS2X =1-tan2X\1+tan2X

SOLVED EXAMPLE

Now in order to understand this formula completeley there is an example

QURSTION PROVE THAT

COS3X=4COS3 X-3COS X

SOLUTION

COS3X=cos (2x+x)

COS3X=cos2x cosx-sin2x sinX

COS3X=cos2xcosx-sin2x sinx

COS3X=(2cos2x-1)cosX-2sinXcos X sinX

COS3X=(2COS2x-1)cosX -2cosx (1-COS2X)

COS3X=2COS3X-cosX -2cosX+2COS3X

COS3X=4COS3 X-3COS X

Hence proved

Votes

In Progress 04-06-2020 Subhani majoka 950

Please briefly explain why you feel this question should be reported .

# Leave An Answer X

### Download Our App!

Enjoy all the features. Browse jobs, articles, questions, scholarships and many more! in just one App